3.260 \(\int \frac{\sec ^{\frac{5}{2}}(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=137 \[ \frac{3 \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x) \sqrt{\sec (c+d x)}}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}+\frac{\sin (c+d x) \sec ^{\frac{5}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}+\frac{3 \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}} \]

[Out]

(3*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*
d) + (Sec[c + d*x]^(5/2)*Sin[c + d*x])/(4*d*(a + a*Sec[c + d*x])^(5/2)) + (3*Sec[c + d*x]^(3/2)*Sin[c + d*x])/
(16*a*d*(a + a*Sec[c + d*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.186849, antiderivative size = 137, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {3810, 3808, 206} \[ \frac{3 \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x) \sqrt{\sec (c+d x)}}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}+\frac{\sin (c+d x) \sec ^{\frac{5}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}+\frac{3 \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^(5/2)/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(3*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*
d) + (Sec[c + d*x]^(5/2)*Sin[c + d*x])/(4*d*(a + a*Sec[c + d*x])^(5/2)) + (3*Sec[c + d*x]^(3/2)*Sin[c + d*x])/
(16*a*d*(a + a*Sec[c + d*x])^(3/2))

Rule 3810

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(b*d*C
ot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1))/(a*f*(2*m + 1)), x] + Dist[(d*(m + 1))/(b*(2*m +
1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && E
qQ[a^2 - b^2, 0] && EqQ[m + n, 0] && LtQ[m, -2^(-1)] && IntegerQ[2*m]

Rule 3808

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b*d)
/(a*f), Subst[Int[1/(2*b - d*x^2), x], x, (b*Cot[e + f*x])/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sec ^{\frac{5}{2}}(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx &=\frac{\sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac{3 \int \frac{\sec ^{\frac{3}{2}}(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx}{8 a}\\ &=\frac{\sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac{3 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac{3 \int \frac{\sqrt{\sec (c+d x)}}{\sqrt{a+a \sec (c+d x)}} \, dx}{32 a^2}\\ &=\frac{\sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac{3 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}-\frac{3 \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,-\frac{a \sqrt{\sec (c+d x)} \sin (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{16 a^2 d}\\ &=\frac{3 \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{\sec (c+d x)} \sin (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right )}{16 \sqrt{2} a^{5/2} d}+\frac{\sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac{3 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}\\ \end{align*}

Mathematica [B]  time = 0.69831, size = 308, normalized size = 2.25 \[ \frac{14 \sin (c+d x) \sqrt{1-\sec (c+d x)} \sec ^{\frac{5}{2}}(c+d x)+6 \sin (c+d x) \sqrt{1-\sec (c+d x)} \sec ^{\frac{3}{2}}(c+d x)-3 \sqrt{2} \tan (c+d x) \sec ^2(c+d x) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{\sec (c+d x)}}{\sqrt{1-\sec (c+d x)}}\right )-6 \sqrt{2} \tan (c+d x) \sec (c+d x) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{\sec (c+d x)}}{\sqrt{1-\sec (c+d x)}}\right )-3 \sqrt{2} \tan (c+d x) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{\sec (c+d x)}}{\sqrt{1-\sec (c+d x)}}\right )+6 \tan (c+d x) (\sec (c+d x)+1)^2 \sin ^{-1}\left (\sqrt{1-\sec (c+d x)}\right )+6 \tan (c+d x) (\sec (c+d x)+1)^2 \sin ^{-1}\left (\sqrt{\sec (c+d x)}\right )}{32 d \sqrt{1-\sec (c+d x)} (a (\sec (c+d x)+1))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^(5/2)/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(6*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(3/2)*Sin[c + d*x] + 14*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(5/2)*Sin[c
 + d*x] - 3*Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Tan[c + d*x] - 6*Sqrt[2]*ArcTa
n[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Sec[c + d*x]*Tan[c + d*x] - 3*Sqrt[2]*ArcTan[(Sqrt[2]*S
qrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Sec[c + d*x]^2*Tan[c + d*x] + 6*ArcSin[Sqrt[1 - Sec[c + d*x]]]*(1 +
 Sec[c + d*x])^2*Tan[c + d*x] + 6*ArcSin[Sqrt[Sec[c + d*x]]]*(1 + Sec[c + d*x])^2*Tan[c + d*x])/(32*d*Sqrt[1 -
 Sec[c + d*x]]*(a*(1 + Sec[c + d*x]))^(5/2))

________________________________________________________________________________________

Maple [A]  time = 0.191, size = 210, normalized size = 1.5 \begin{align*} -{\frac{ \left ( -1+\cos \left ( dx+c \right ) \right ) ^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{3}}{16\,d{a}^{3} \left ( \sin \left ( dx+c \right ) \right ) ^{5}} \left ( 3\,\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \left ( \cos \left ( dx+c \right ) \right ) ^{2}-3\,\arctan \left ( 1/2\,\sin \left ( dx+c \right ) \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \right ) \cos \left ( dx+c \right ) \sin \left ( dx+c \right ) +4\,\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\cos \left ( dx+c \right ) -3\,\arctan \left ( 1/2\,\sin \left ( dx+c \right ) \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \right ) \sin \left ( dx+c \right ) -7\,\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \right ) \sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}} \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{-1} \right ) ^{{\frac{5}{2}}}{\frac{1}{\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(5/2),x)

[Out]

-1/16/d/a^3*(-1+cos(d*x+c))^2*(3*(-2/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)^2-3*arctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c
)+1))^(1/2))*cos(d*x+c)*sin(d*x+c)+4*(-2/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)-3*arctan(1/2*sin(d*x+c)*(-2/(cos(d*x
+c)+1))^(1/2))*sin(d*x+c)-7*(-2/(cos(d*x+c)+1))^(1/2))*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*cos(d*x+c)^3*(1/cos
(d*x+c))^(5/2)/(-2/(cos(d*x+c)+1))^(1/2)/sin(d*x+c)^5

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]  time = 2.08945, size = 1127, normalized size = 8.23 \begin{align*} \left [\frac{3 \, \sqrt{2}{\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt{a} \log \left (-\frac{a \cos \left (d x + c\right )^{2} - 2 \, \sqrt{2} \sqrt{a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + \frac{4 \,{\left (3 \, \cos \left (d x + c\right )^{2} + 7 \, \cos \left (d x + c\right )\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt{\cos \left (d x + c\right )}}}{64 \,{\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}, -\frac{3 \, \sqrt{2}{\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt{-a} \arctan \left (\frac{\sqrt{2} \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) - \frac{2 \,{\left (3 \, \cos \left (d x + c\right )^{2} + 7 \, \cos \left (d x + c\right )\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt{\cos \left (d x + c\right )}}}{32 \,{\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[1/64*(3*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*s
qrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*x + c) - 3*
a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 4*(3*cos(d*x + c)^2 + 7*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/co
s(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x
+ c) + a^3*d), -1/32*(3*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(-a)*arctan(sqrt(
2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))/(a*sin(d*x + c))) - 2*(3*cos(d*x + c)^2
 + 7*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^3*d*cos(d*x + c
)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(5/2)/(a+a*sec(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{\frac{5}{2}}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^(5/2)/(a*sec(d*x + c) + a)^(5/2), x)